Application of boron carbide B4C powder

Overview of boron carbide B4C powder

Boron carbide, also known as black diamond, is an inorganic substance with the chemical formula B₄C, usually a gray-black micropowder. It is one of the three hardest known materials (after diamond and cubic boron nitride) and is used in tank armor, body armor and many industrial applications. It has a Mohs hardness of about 9.5.

Preparation of boron carbide B4C powder

Boron carbide was first reported in the Journal of the American Chemical Society, which was obtained by the reaction of coke and boron oxide in an electric furnace. This preparation method is also the method used in current industrial production.

2B2O3+7C=B4C+6CO

{xunruicms_img_title}

Application of boron carbide B4C powder

control nuclear fission

Boron carbide can absorb a large number of neutrons without forming any radioactive isotopes. It is an ideal neutron absorber in nuclear power plants. Neutron absorbers mainly control the rate of nuclear fission. Boron carbide is mainly used in nuclear reactors as controllable rods, but is sometimes powdered due to increased surface area.

During the Chernobyl nuclear accident in 1986, Russia dropped nearly 2,000 tons of boron carbide and sand, which ultimately stopped a chain reaction within the reactor.

Abrasives

Because boron carbide has long been used as a rough grinding material. Due to its high melting point, it is not easy to cast into artificial products, but it can be processed into simple shapes by melting powder at high temperature. For grinding, grinding, drilling and polishing of hard materials such as carbide and gemstones.

coating

Boron carbide can also be used as ceramic coatings for warships and helicopters. It is lightweight and has the ability to resist penetration of armor-piercing projectiles through thermocompression coatings, forming a complete defensive layer.

nozzle

In the arms industry, it can be used to make gun barrels. Boron carbide, extremely hard and wear-resistant, does not react with acid and alkali, high and low temperature resistance, high pressure resistance, density ≥2.46g/cm3; microhardness ≥3500kgf/mm2, flexural strength ≥400MPa, melting point 2450℃.

Since boron carbide nozzles have the above-mentioned characteristics of wear resistance and high hardness, boron carbide sandblasting nozzles will gradually replace known cemented carbide/tungsten steel and silicon carbide, silicon nitride, alumina, zirconia and other sandblasting nozzles.

other

Boron carbide is also used in the manufacture of metal borides, smelting sodium boron, boron alloys and special welding.

Boron carbide B4C powder price

The price of boron carbide B4C powder will vary randomly due to factors such as production costs, transportation costs, international conditions, exchange rates, and market supply and demand of boron carbide B4C powder. Tanki New Materials Co.,Ltd.aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for boron carbide B4C powder, please feel free to send an inquiry to get the latest price of boron carbide B4C powder.

Boron Carbide B4C Powder Suppliers

As a global supplier of boron carbide B4C powders, Tanki New Materials Co.,Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (titanium diboride, silicon hexaboride, molybdenum boride, iron boride), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Boron Carbide Properties
Other Names B4C, B4C powder, black diamond, boron carbide powder,
boron-carbon refractory ceramic
CAS No. 12069-32-8
Compound Formula B4C
Molecular Weight 55.26
Appearance Gray to Black Powder
Melting Point 2763 °C
Boiling Point 3500 °C
Density 2.52 g/cm3
Solubility in H2O Insoluble
Electrical Resistivity 0 to 11 10x Ω-m
Poisson's Ratio 0.17-0.18
Tensile Strength 350 MPa (Ultimate)
Thermal Conductivity 31 to 90 W/m-K
Thermal Expansion 4.5 to 5.6 µm/m-K
Vickers Hardness 26 Mpa
Young's Modulus 240 to 460 Gpa
Exact Mass 56.037222
Boron Carbide Health & Safety Information
Signal Word Warning
Hazard Statements H332
Hazard Codes Xi
Risk Codes 20
Safety Statements 22-39
RTECS Number N/A
Transport Information N/A
WGK Germany 3

Newsletter Updates

Enter your email address below and subscribe to our newsletter